An information criterion for marginal structural models
نویسندگان
چکیده
منابع مشابه
An application of model-fitting procedures for marginal structural models.
Marginal structural models (MSMs) are being used more frequently to obtain causal effect estimates in observational studies. Although the principal estimator of MSM coefficients has been the inverse probability of treatment weight (IPTW) estimator, there are few published examples that illustrate how to apply IPTW or discuss the impact of model selection on effect estimates. The authors applied...
متن کاملMarginal structural models for partial exposure regimes.
Intensive care unit (ICU) patients are highly susceptible to hospital-acquired infections due to their poor health and many invasive therapeutic treatments. The effect on mortality of acquiring such infections is, however, poorly understood. Our goal is to quantify this using data from the National Surveillance Study of Nosocomial Infections in ICUs (Belgium). This is challenging because of the...
متن کاملAn Akaike information criterion for multiple event mixture cure models
We derive the proper form of the Akaike information criterion for variable selection for mixture cure models, which are often fit via the expectation-maximization algorithm. Separate covariate sets may be used in the mixture components. The selection criteria are applicable to survival models for right-censored data with multiple competing risks and allow for the presence of an insusceptible gr...
متن کاملA focused information criterion for graphical models
A new method for model selection for Gaussian Bayesian networks and Markov networks, with extensions towards ancestral graphs, is constructed to have good mean squared error properties. The method is based on the focused information criterion, and offers the possibility of fitting individualtailored models. The focus of the research, that is, the purpose of the model, directs the selection. It ...
متن کاملBayesian information criterion for censored survival models.
We investigate the Bayesian Information Criterion (BIC) for variable selection in models for censored survival data. Kass and Wasserman (1995, Journal of the American Statistical Association 90, 928-934) showed that BIC provides a close approximation to the Bayes factor when a unit-information prior on the parameter space is used. We propose a revision of the penalty term in BIC so that it is d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics in Medicine
سال: 2012
ISSN: 0277-6715
DOI: 10.1002/sim.5599